
are

 Group

er 6500
Testing Existing Scientific Softw

Presented to the ASCI V&V Working

Ellen Shepherd
Information Systems Engineering Cent

August 19, 1999

t nique
o

id quire-
ts
ti r current

p verify and
a
rs of the code
e odels used
n
e a formal
u

Page 2

Scien
envir

• Rap
men

• Exis
use

• Com
valid

• Use
• Cod

for a
• Cod

prod
ific software is developed in a u
nment

 prototyping often entails evolving re
 and design issues

ng (legacy) software is enhanced fo

lex numerical models are difficult to
te
 are very knowledgeable about use
 may be one of many in a chain of m
alysis
 is perceived as a research tool, not
ct

e and verifi-
n

t?
l?

l

code
Page 3

Ther
catio

rea
are many aspects of validation
 in scientific software

Verification: Is the model righ
Validation: Is it the right mode

life conceptual model

numerical model

computational model

n nd
u

u
st
ua ssive ver-
s
av testing

 a

in
in
es
Page 4

Testi
comp

The p
• to e
• to q

sion
• to h

which

• test
• test
• ass
g verifies correctness of code a
tational model

rposes of testing are
ablish a level of confidence
ntify relative improvements in succe

e a test methodology for regression

re accomplished by

g correctness of the code
g code against model design
sing reliability

n benefits

ca ents

id

iti

tu

id ironments
 p
Page 5

Testi

• Indi

• Prov

• Pos

• Cap

• Prov
and
g provides immediate, tangible

tes areas for performance improvem

es updates for users’ manuals

ons software for accreditation

res knowledge of domain experts

es baseline for porting to other env
latforms

n fits

id

id orts

t e level of for-
ity

t e ed
Page 6

Testi

• Prov

• Prov

• Tes
mal

• Tes
g provides programmatic bene

es focus for application of code

es focus for future development eff

fforts are readily promotable to any
 of process

fforts are readily scalable if warrant

n r of the

failure
Page 7

Testi
code
g is characterizing the behavio

•Testing is not debugging

•Test for success, and test for

•Conduct conscious testing

 d ftware?

u software.

b ent

b s

b nges

e t plan
id)
Page 8

How

I. B

• Esta

• Esta

• Esta

• Dev
(cons
o I go about testing existing so

ild a foundation for testing scientific

lish and use configuration managem

lish and use programming guideline

lish a process to integrate code cha

lop a long-range, comprehensive tes
er interdependencies of codes and data models

v

ti
ai tions.
ti
ti e tested.
ti
b
b
e
ti
b tingencies.
Page 9

II. De

• Iden
• Obt
• Iden
• Iden
• Iden
• Esta
• Esta
• Hav
• Iden
• Esta
elop and implement test plan.

fy stakeholders and responsibilities.
n requirements and design specifica
fy items to be tested.
fy features to be tested and not to b
fy test environment(s).
lish test entry criteria.
lish pass/fail criteria.
 test cases reviewed and approved.
fy test deliverables.
lish schedule, identify risks and con

e

b code
ir aches

y ess of
le
ic
am
, c
gra
ctu

t c in
pa sts, other simu-
n parison for tran-
t p
Page 10

III. D

• Esta
requ

• Man
imp
stat
dyn
unit
inte
stru

• Tes
com
latio
sien
velop appropriate test cases.

lishing confidence in the use of the
es a judicious combination of appro

 methods support verifying correctn
mentation against design
test code review
ic test regression test

omponent tests test tools
tion/system test coverage analysis
ral test functional test

ases may come from problem doma
risons against known analytic solution, arena te

software; sensitivity analyses; steady state com
roblems

• T sis and
u

stimation of
9-1612, 4/99

 Manufactured

• E ign

nfidence
est cases may focus on numerical analy
ncertainty quantification

Oberkampf and DeLand, “A New Methodology for the E
Total Uncertainty in Computational Simulation,” AIAA-9

Knupp and Salari, “Code Verification via the Method of
Solutions,” Draft

nsure coverage of requirements and des

Balance costs with acceptable level of co

y chniques
e

s utput
ir ptions
s

- a ess of these

a ce of soft-
e
Page 12

Appl
to oth

• Con
requ
acro

• Pre

• Dat
war
analogous test concepts and te
r components in the system

tituent models: Consider input and o
ements, and compatibility of assum
s the models

nd post-processors: Verify correctn

models: Consider the interdependen
and data

m

tin he code
d
t e efits
t e to any level
&

 e are:
ay

 T e 0). The Coriolis Group;
503

f S iley & Sons; ISBN:
81
Page 13

Sum

• Tes
• Con
• Tes
• Tes

of V

• Two
(There m

Software
ISBN: 18

The Ar t o
04710432
ary

g is characterizing the behavior of t
uct conscious testing
fforts have immediate, tangible ben
fforts are promotable and scalable
V requirements

xcellent references on testing softw
be other equally good references; here are two I’ve used.)

sting T echniques, Boris Beizer, Paperback, 2nd edition (199
28803; amazon.com price $44.76.

oftware T esting, Glenford Myers, Hardcover, (1979). John W
; amazon.com price $85.00.

	Testing Existing Scientific Software
	Presented to the ASCI V&V Working Group
	Ellen Shepherd
	Information Systems Engineering Center 6500
	August 19, 1999
	Scientific software is developed in a unique environment
	• Rapid prototyping often entails evolving requirements and design issues
	• Existing (legacy) software is enhanced for current use
	• Complex numerical models are difficult to verify and validate
	• Users are very knowledgeable about use of the code
	• Code may be one of many in a chain of models used for analysis
	• Code is perceived as a research tool, not a formal product

	There are many aspects of validation and verification in scientific software
	Verification: Is the model right?
	Validation: Is it the right model?
	real life
	conceptual model
	numerical model
	computational model
	code
	Testing verifies correctness of code and computational model
	The purposes of testing are
	• to establish a level of confidence
	• to quantify relative improvements in successive versions
	• to have a test methodology for regression testing

	which are accomplished by
	• testing correctness of the code
	• testing code against model design
	• assessing reliability

	Testing provides immediate, tangible benefits
	• Indicates areas for performance improvements
	• Provides updates for users’ manuals
	• Positions software for accreditation
	• Captures knowledge of domain experts
	• Provides baseline for porting to other environments and platforms

	Testing provides programmatic benefits
	• Provides focus for application of code
	• Provides focus for future development efforts
	• Test efforts are readily promotable to any level of formality of process
	• Test efforts are readily scalable if warranted

	Testing is characterizing the behavior of the code
	• Testing is not debugging
	• Test for success, and test for failure
	• Conduct conscious testing

	How do I go about testing existing software?
	I. Build a foundation for testing scientific software.
	• Establish and use configuration management
	• Establish and use programming guidelines
	• Establish a process to integrate code changes
	• Develop a long-range, comprehensive test plan

	(consider interdependencies of codes and data models)
	Apply analogous test concepts and techniques to other components in the system
	• Constituent models: Consider input and output requirements, and compatibility of assumptions ac...
	• Pre- and post-processors: Verify correctness of these
	• Data models: Consider the interdependence of software and data

	Summary
	• Testing is characterizing the behavior of the code
	• Conduct conscious testing
	• Test efforts have immediate, tangible benefits
	• Test efforts are promotable and scalable to any level of V&V requirements
	• Two excellent references on testing software:

	(There may be other equally good references; here are two I’ve used.)
	Software Testing Techniques, Boris Beizer, Paperback, 2nd edition (1990). The Coriolis Group; ISB...
	The Art of Software Testing, Glenford Myers, Hardcover, (1979). John Wiley & Sons; ISBN: 04710432...
	II. Develop and implement test plan.
	• Identify stakeholders and responsibilities.
	• Obtain requirements and design specifications.
	• Identify items to be tested.
	• Identify features to be tested and not to be tested.
	• Identify test environment(s).
	• Establish test entry criteria.
	• Establish pass/fail criteria.
	• Have test cases reviewed and approved.
	• Identify test deliverables.
	• Establish schedule, identify risks and contingencies.

	III. Develop appropriate test cases.
	• Establishing confidence in the use of the code requires a judicious combination of approaches
	• Many methods support verifying correctness of implementation against design

	static test code review
	dynamic test regression test
	unit, component tests test tools
	integration/system test coverage analysis
	structural test functional test
	• Test cases may come from problem domain

	comparisons against known analytic solution, arena tests, other simulation software; sensitivity ...
	• Test cases may focus on numerical analysis and uncertainty quantification

	Oberkampf and DeLand, “A New Methodology for the Estimation of Total Uncertainty in Computational...
	Knupp and Salari, “Code Verification via the Method of Manufactured Solutions,” Draft
	• Ensure coverage of requirements and design

	Balance costs with acceptable level of confidence

